
Quantum Mechanics I
Week 8 (Solutions)

Spring Semester 2025

1 Expectation Values for the Harmonic Oscillator
Consider the one-dimensional simple harmonic oscillator.

For the calculations in this exercise, we wish to avoid any integrals. Thus, we will express
the position and momentum operators in terms of the ladder operators as we defined them
in the lecture:

â =

√
mω

2ℏ

(
x̂+

ip̂

mω

)
, â† =

√
mω

2ℏ

(
x̂− ip̂

mω

)
. (1.1)

The position and momentum operators are:

x̂ =

√
ℏ

2mω

(
â+ â†

)
, p̂ = i

√
ℏmω
2

(â† − â). (1.2)

We will also use a property of the ladder operators when acting on the number states,
namely

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , â |n⟩ =

√
n |n− 1⟩ , (1.3)

as well as the orthonormality of the number states ⟨n|m⟩ = δn,m. Using these relations,
we can deduce the action of the position and momentum operators on the number states:

x̂ |n⟩ =
√

ℏ
2mω

[√
n |n− 1⟩+

√
n+ 1 |n+ 1⟩

]
, (1.4)

p̂ |n⟩ = i

√
ℏmω
2

[√
n+ 1 |n+ 1⟩ −

√
n |n− 1⟩

]
. (1.5)

A. Evaluate the following matrix elements:

(a) ⟨m|x|n⟩

⟨m|x|n⟩ =
√

ℏ
2mω

⟨m|(a+ a†)|n⟩

=

√
ℏ

2mω

[√
nδm,n−1 +

√
n+ 1δm,n+1

]
.
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(b) ⟨m|p|n⟩

⟨m|p|n⟩ = i

√
ℏmω
2

⟨m|(a† − a)|n⟩

= i

√
ℏmω
2

[√
n+ 1δm,n+1 −

√
nδm,n−1

]
.

(c) ⟨m|{x, p}|n⟩

⟨m|{x, p}|n⟩ = ⟨m|xp|n⟩+ ⟨m|px|n⟩

= i

√
ℏmω

2

[√
n+ 1 ⟨m|x|n+ 1⟩ −

√
n ⟨m|x|n− 1⟩

]
+

+

√
ℏ

2mω

[√
n ⟨m|p|n− 1⟩+

√
n+ 1 ⟨m|p|n+ 1⟩

]
= i

ℏ
2

[
(n+ 1)δm,n +

√
(n+ 1)(n+ 2)δm,n+2 −

√
n(n− 1)δm,n−2 − nδm,n

]
+

+ i
ℏ
2

[
nδm,n −

√
n(n− 1)δm,n−2 +

√
(n+ 1)(n+ 2)δm,n+2 − (n+ 1)δm,n

]
= iℏ

[√
(n+ 1)(n+ 2)δm,n+2 −

√
n(n− 1)δm,n−2

]
.

(d) ⟨m|x2|n⟩

⟨m|x2|n⟩ =
√

ℏ
2mω

[√
n ⟨m|x|n− 1⟩+

√
n+ 1 ⟨m|x|n+ 1⟩

]
=

ℏ
2mω

[√
n(n− 1) δn−2,m + (2n+ 1) δn,m +

√
(n+ 1)(n+ 2) δn+2,m

]
.

(e) ⟨m|p2|n⟩

⟨m|p2|n⟩ = i

√
ℏmω

2

[√
n+ 1 ⟨m|p|n+ 1⟩ −

√
n ⟨m|p|n− 1⟩

]
= − ℏmω

2

[√
(n+ 1)(n+ 2) δn+2,m − (2n+ 1) δn,m +

√
n(n− 1) δn−2,m

]
.

where |n⟩ , |m⟩ represent number states of the harmonic oscillator. Use the ladder
operators to avoid any integrals.

B. From classical physics, the virial theorem states that:〈
p2

m

〉
=

〈
x
dV

dx

〉
. (1.6)
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Check that the virial theorem holds for the expectation values of the kinetic and the
potential energy taken with respect to an energy eigenstate.

For the harmonic oscillator potential:

V (x) =
1

2
mω2x2 ⇒ dV

dx
= mω2x .

Using our result from Question A(d) for the state |n⟩, we find〈
p2

m

〉
=

ℏω
2

(2n+ 1) = ℏω
(
n+ 1

2

)
, and

〈
x
dV

dx

〉
=

ℏω
2

(2n+ 1) = ℏω
(
n+ 1

2

)
.

and the virial theorem is indeed satisfied.

2 Linear combination of eigenstates of the harmonic
oscillator

Consider a linear harmonic oscillator. Let ψ0 and ψ1 be the respective real eigenfunctions
of the ground state and the first excited state. Let

ψ = Aψ0 +Bψ1

be the wave function of the oscillator at a given time, where A and B are real values, and
properly normalized.

(a) Calculate the expectation value of the position operator as a function of ψ0 and ψ1.

The expectation value of x̂ is given by

⟨x̂⟩ =
∫
ψ∗(x)xψ(x)dx =

∫
x(Aψ0 +Bψ1)

2dx

= A2⟨ψ0|x̂|ψ0⟩+B2⟨ψ1|x̂|ψ1⟩+ 2AB⟨ψ0|x̂|ψ1⟩
= 2AB⟨ψ0|x̂|ψ1⟩. (2.1)

where ⟨ψ0|x̂|ψ0⟩ = 0 and ⟨ψ1|x̂|ψ1⟩ = 0 for the harmonic oscillator.

(b) Find the coefficients A and B which maximize or minimize ⟨x̂⟩.
Using the orthonormality condition of the eigenfunctions of the harmonic oscillator,
we find∫

|ψ(x)|2dx =

∫
(Aψ0(x) +Bψ1(x))

2dx = 1 ⇒ A2 +B2 = 1. (2.2)

Since ⟨ψ0|ψ1⟩ = 0, we can rewrite our result from the previous question as

⟨x̂⟩ = 2AB⟨ψ0|x̂|ψ1⟩ = (1− 1 + 2AB)⟨ψ0|x̂|ψ1⟩
= [1− (A−B)2]⟨ψ0|x̂|ψ1⟩. (2.3)
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To find the values of A and B for which ⟨x̂⟩ is extremal, we consider the function:

f = AB = A
√
1− A2, (2.4)

and differentiate:
df

dA
=

1− 2A2

√
1− A2

= 0 ⇒ A = ± 1√
2
. (2.5)

Therefore, using the result of Eq. (2.3), we find that for A = B = 1√
2
, ⟨x̂⟩ is

maximized, and for A = −B = − 1√
2
, ⟨x̂⟩ is minimized.

Another option is to use the method of Lagrange multipliers. This implies that we
need to minimize the function A2+B2−λAB where λ is a Lagrange multiplier. The
equation has to be solved together with the constraint A2 +B2 = 1. Differentiating
with respect to A and B gives 2A− λB = 0, 2B − λA = 0.

The solutions are ⟨x̂⟩ stationary are B = ±A and, due to the normalization
condition, give as before, A = B = 1√

2
and A = −B = − 1√

2
.

3 Time evolution of the harmonic oscillator
We consider a quantum harmonic oscillator in one dimension which is characterized by a
mass m and angular frequency ω.

(a) We prepare the system in the state

|Ψ1(t = 0)⟩ = 1√
2
(|0⟩+ |3⟩),

where |n⟩ (n = 0, 1, . . .) describes the n-th excited eigenstate of the oscillator
(a†a|n⟩ = n|n⟩). Give the expression of |Ψ1(t)⟩ corresponding to a state of the
system at some time t.

The time-evolution of |Ψ1(t = 0)⟩ is governed by the time-dependent Schrödinger
equation:

iℏ
d

dt
|Ψ1(t)⟩ = Ĥ|Ψ1(t)⟩. (3.1)

Since the Hamiltonian is time-independent, the solution to the above equation is
given by

|Ψ1(t)⟩ = e−
i
ℏ Ĥt|Ψ1(0)⟩

=
1√
2

[
e−iωt/2|0⟩+ e−i7ωt/2|3⟩

]
=

1√
2
e−iωt/2

[
|0⟩+ e−i3ωt|3⟩

]
. (3.2)
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(b) Deduce that the evolution of the system is periodic. Give the period of the state
of the system, i.e., the minimum time after which the expectation value of any
observable will be the same as that at t = 0.

We deduce that the temporal evolution of the system is periodic. The global phase
e−iωt/2 which multiplies the terms between brackets has no influence on the physics
of the evolution of the system. The system returns to the original state when the
phase in front of |3⟩ is one, i.e.

ei3ωt = 1 ⇒ 3ωt = 2nπ, (3.3)

where n is an integer number. The period then is trivially obtained:

T1 =
2π

3ω
. (3.4)

(c) Consider now an initial state

|Ψ2(t = 0)⟩ = 1√
2
(|1⟩+ eiα|4⟩).

Redo questions (a) and (b) for the state |Ψ2(t = 0)⟩.
In a similar fashion as in question (a), the time-evolution of |Ψ2(0)⟩ is given by:

|Ψ2(t)⟩ = e−
i
ℏ Ĥt|Ψ2(0)⟩

=
1√
2
e−i3ωt/2

[
|1⟩+ eiαe−i3ωt|4⟩

]
. (3.5)

Using very similar arguments as in the previous question, we find:

T2 =
2π

3ω
. (3.6)

(d) Consider finally an initial state of the form of a linear combination of the two
previous states,

|Ψ(t = 0)⟩ = 1√
2

[
|Ψ1(t = 0)⟩+ |Ψ2(t = 0)⟩

]
.

What is the period of the state of the system?

At a time t, the state |Ψ(t)⟩ is given by:

|Ψ(t)⟩ = e−
i
ℏ Ĥt|Ψ(0)⟩

=
1√
2

[
e−iωt/2|0⟩+ e−i7ωt/2|3⟩+ e−i3ωt/2|1⟩+ eiαe−i9ωt/2|4⟩

]
=

1√
2
e−iωt/2

[
|0⟩+ e−i3ωt|3⟩+ e−iωt|1⟩+ eiαe−i4ωt|4⟩

]
(3.7)
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Of the four terms in square brackets, three terms contain complex exponentials with
different periods. Specifically,

T|1⟩ ≡ T ′ =
2π

ω
, T|3⟩ =

2π

3ω
=
T ′

3
, T|4⟩ =

2π

4ω
=
T ′

4
. (3.8)

Given this observation, the state ket |Ψ⟩ returns back to its original form after time

T =
2π

ω
, (3.9)

which corresponds to the period we were looking for.

It is interesting to remark that the linear combination of the two states |Ψ1(t)⟩ and
|Ψ2(t)⟩, which both have the same period individually, does not necessarily give a
state which evolves with that same period. In fact, the period of the total state is
three times that of the system described by the individual states |Ψ1(t)⟩ and |Ψ2(t)⟩.

(e) Consider now an arbitrary initial state. Show that the time-evolution of the state is
always periodic under t → t + T with T = 2π/ω (the classical period of oscillation
of the harmonic oscillator). Note that this does not exclude a higher periodicity
under t→ t+ nT with n ≥ 1 an integer.

Any initial state can be expanded as

|ψ⟩ =
∞∑
n=0

cn|n⟩ , (3.10)

with
∑∞

n=0 |cn|2 = 1. The time-evolved state at time t in the Schrödinger picture is

|ψ(t)⟩ = e−iωt/2

∞∑
n=0

cne
−inωt|n⟩ . (3.11)

If t→ t+ T with T = 2π/ω, the wavefunction becomes

|ψ(t+ T )⟩ = e−iωt/2e−iπ

∞∑
n=0

cne
−inωt|n⟩ = −|ψ(t)⟩ . (3.12)

So we see that any wavefunction after a time T returns equal to itself, up to a
phase factor (in this case, a simple minus sign). The minus sign does not change the
probabilities and the averages of operators calculated at time t+ T . So the system
is periodic with period T .

4 Oscillator in an Electric Field
The Hamiltonian describing a certain system can be approximated by an oscillator of
mass m and frequency ω. The bound particle has electric charge q. Initially, the system
is in its ground state. The system is placed in an external electric field E .
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(a) Write down the new Hamiltonian.

The new Hamiltonian is

H = H0 − d E =
p2

2m
+

1

2
mω2 x2 − E q x,

which differs from H0 only by a shift in the coordinate (minus an energy constant):

H =
p2

2m
+

1

2
mω2x2 − Eqx =

p2

2m
+

1

2
mω2

(
x− E q

mω2

)2
− 1

2

E2q2

mω2
.

(b) Determine its energy spectrum.

To determine the energies, we define a new shifted position operator

x̃ ≡ x− E q
mω2

, (4.1)

thus the Hamiltonian becomes:

H =
p2

2m
+

1

2
mω2x̃2 − 1

2

E2q2

mω2
. (4.2)

Then, similarly as in the zero-field case, we define ladder operators a, a† in terms of
the momentum and the shifted position operator. The Hamiltonian is now expressed
in terms of the ladder operators as:

H = ℏω(a†a+
1

2
)− 1

2

E2 q2

mω2
. (4.3)

Thus, the eigenvalues of H are:

En = ℏω
(
n+ 1

2

)
− 1

2

E2 q2

mω2
.

(c) Find the position representation of the new ground state of the system. Express
your result in terms of the quantities

ℓ =

√
ℏ
mω

, b =
E q
mω2

.

Recall the wavefunction for the old ground state:

ψ0(x) = π−1
4

1√
ℓ
exp
(
−1

2
x2

ℓ2

)
,

where we have introduced the length ℓ. Now, the new ground state is simply the
shifted by b compared to the old ground state,

ψ0̃(x) = π−1
4

1√
ℓ
exp
(
−1

2
(x−b)2

ℓ2

)
.
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This can be shown by simply solving the equation ⟨x| a
∣∣0̃〉 = 0 using the new

definition of the lowering operator in terms of the shifted position operator.

The excited states are obtained by applying the raising operator on the ground
state.

(d) What is the probability that, once the electric field is switched on, the system is
found in the (new) ground state?

The probability that the system is found in the new ground state ψ0̃(x) is:

P =
∣∣⟨0 | 0̃⟩

∣∣2 = ∣∣∣∫ +∞

−∞
ψ0(x)ψ0̃(x) dx

∣∣∣2 = exp
(
− b2

2 ℓ2

)
.

In the second equality, we have used the resolution of identity in the position basis.

In the case of zero electric field, we have b = 0, and thus the probability is unity, as
expected.

(e) If the system is in the new ground state, what is the value of its average dipole
moment?

The dipole operator is d = q x. By shifting the variable to z = x − b, the new
Hamiltonian is identical to the old one (up to a constant). Therefore,

⟨0̃ | q x | 0̃⟩ = ⟨0̃ | q z | 0̃⟩ + ⟨0̃ | q b | 0̃⟩ = q b =
q2

mω2
E .

Therefore, applying an electric field to our quantum system induces a non-zero dipole
moment, which is consistent with our expectations from classical electrodynamics.

5 Harmonic oscillator in the Heisenberg and the
Schrödinger pictures

(a) Solve the Heisenberg equations of motion for the time-dependent operators x̂(t),
p̂(t) in the case of a single harmonic oscillator.

The Heisenberg equations of motion read

d

dt
x̂(t) =

i

ℏ
[Ĥ, x̂(t)] =

i

ℏ

[
p̂2(t)

2m
, x̂(t)

]
(5.1)

d

dt
p̂(t) =

i

ℏ
[Ĥ, p̂(t)] =

i

ℏ

[
mω2x̂2(t)

2
, p̂(t)

]
. (5.2)

The commutators at time t can be calculated using that [x̂(t), p̂(t)] = [x̂(0), p̂(0)] =
iℏ. This gives:

d

dt
x̂(t) =

p̂(t)

m
,

d

dt
p̂(t) = −mω2x̂(t) . (5.3)
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The equations are identical to those of a classical harmonic oscillator. (The same
property is valid for any Hamiltonian of the form H = p̂2/2m+V (x̂)). The solution
of the equations of motion is

x̂(t) = cos(ωt)x̂(0) + sin(ωt)p̂(0)/(mω)

p̂(t) = − sin(ωt)mωx̂(0) + cos(ωt)p̂(0) .
(5.4)

The operators at time t = 0 coincide with the corresponding operators in the
Schrödinger representation.

(b) Calculate the average values ⟨x⟩, and ⟨p⟩, for an arbitrary initial state and at an
arbitrary time t using the Heisenberg representation.

In the Heisenberg picture, we can calculate the time-dependent averages using the
corresponding time-dependent operators:

⟨x̂(t)⟩ = cos(ωt)⟨ψ0|x̂(0)|ψ0⟩+ sin(ωt)
⟨ψ0|p̂(0)|ψ0⟩

mω
,

⟨p̂(t)⟩ = −mω sin(ωt)⟨ψ0|x̂(0)|ψ0⟩+ cos(ωt)⟨ψ0|p(0)|ψ0⟩ ,
(5.5)

Here, |ψ0⟩ is the state vector in the Heisenberg representation (which is
time-independent).

(c) Repeat the calculation in the Schrödinger representation using the basis of
stationary states and show that equivalent results are obtained.

To recover the same results in the Schrödinger representation we can decompose the
state vector at t = 0 as

|ψ0⟩ =
∞∑
n=0

cn|n⟩ . (5.6)

The time-evolved state is then

|ψ(t)⟩ = e−iωt/2

∞∑
n=0

cne
−inωt|n⟩ . (5.7)

The averages ⟨x̂(t)⟩, ⟨p̂(t)⟩ can then be calculated as

⟨x̂(t)⟩ = ⟨ψ(t)|x̂|ψ(t)⟩ =
∑
n,k

ei(k−n)ωtc∗kcn⟨k|x̂|n⟩ ,

⟨p̂(t)⟩ = ⟨ψ(t)|p̂|ψ(t)⟩ =
∑
n,k

ei(k−n)ωtc∗kcn⟨k|p̂|n⟩ ,
(5.8)

The matrix elements ⟨k|x̂|n⟩, ⟨k|p̂|n⟩ are nonzero only if n = k ± 1. Thus
cos((k − n)ωt) = cos(ωt) and sin((k − n)ωt) = (k − n) sinωt.

Then we can rewrite

⟨x̂(t)⟩ =
∑
n,k

c∗kcn[cos(ωt)⟨k|x̂|n⟩+ i(k − n) sin(ωt)⟨k|x̂|n⟩]

⟨p̂(t)⟩ =
∑
n,k

c∗kcn[cos(ωt)⟨k|p̂|n⟩+ i(k − n) sin(ωt)⟨m|p̂|n⟩] .
(5.9)
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We can now two another properties of the matrix elements, which can be shown
using the results of exercise 1: ⟨k|p̂|n⟩ = i(k − n)mω⟨k|x̂|n⟩, ⟨k|x̂|n⟩ = −i(k −
n)⟨k|p̂|n⟩/(mω). Substituting in the expression and using that for all nonzero matrix
elements (k − n)2 = 1 we find:

⟨x̂(t)⟩ =
∑
n,k

c∗kcn

[
cos(ωt)⟨k|x̂|n⟩+ 1

mω
sin(ωt)⟨k|p̂|n⟩

]
= ⟨ψ0 |x̂ cos(ωt) + (p̂/(mω))|ψ0⟩ ,

⟨p̂(t)⟩ =
∑
n,k

c∗kcn [−mω sin(ωt)⟨k|x̂|n⟩+ cos(ωt)⟨k|p̂|n⟩]

⟨ψ0|(−mω sin(ωt)x̂+ cos(ωt)p̂)|ψ0⟩ .

(5.10)

Identifying x̂ = x̂(0) and p̂ = p̂(0) we recover the equivalence with the result found
in the Heisenberg picture.

In this calculation we checked explicitly and in a particular case the equivalence of
the two calculations. The equivalence however, is fully general, and can be proved
more generally and more quickly by identifying x̂(t) = Û−1(t)x̂Û . In the Schrödinger
representation the average is calculated as ⟨ψ(t)|x̂|ψ(t)⟩ which inserting Û(t)|ψ0⟩ and
⟨ψ(t)| = ⟨ψ0|Û †(t) = ⟨ψ0|Û−1(t) becomes ⟨ψ0|Û−1(t)x̂Û(t)|ψ0⟩. In the Heisenberg
picture we assign the evolution to the operator: x̂(t) = Û−1(t)x̂Û(t) and we find the
same result for the time-dependent average: ⟨x̂(t)⟩ = ⟨ψ0|Û−1(t)x̂Û |ψ0⟩.
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